
From Concept to Code: 
Integrating zkVerify into your dApp

Daniele Di Benedetto - Engineering Manager, zkVerify
Steve Rushby - Senior QA Automation Engineer
Luca Giussani - Cryptographic Engineer



Agenda

● Background Context

● Technical Core

● Web2 Apps Integration

● Web3 DApps Integration

● Looking Ahead



Background
Context



Current: World of Continuously-Generated Data

Highlights 
(Data Created Per Minute)

● 46.1 Million WhatsApp Messages

● 241 Million Emails 

● 102 MB of Data Per Person

● 360K Tweets Sent on X 

● ~7K Prompts to Chat GPT

Source: Digital Information World, Dec 2023.



Explosion of Data: Continuous & Overflowing

Web 2

● Web Browsers
● Mobile Devices
● Social Media 

Web 3

● Decentralized Blockchains
● Privacy Applications
● ZK Virtual Machines

Web 4

● Artificial Intelligence (AI)
● Internet of Things (IoT)
● Augmented & Virtual Worlds

∂n∂i ∂n∂i ∂n∂i

∂ = Data Created



Future: Continuous Stream of Proofs

i

Overflow of Data = Overflow of Proofs



zkVerify: Decentralized Blockchain to Verify Proofs

Web 2

● Web Browsers
● Mobile Devices
● Social Media 

Web 3

● Decentralized Blockchains
● Privacy Applications
● ZK Virtual Machines

Web 4

● Artificial Intelligence (AI)
● Internet of Things (IoT)
● Augmented & Virtual Worlds

i n i n i n

zkVerify Blockchain



What is zkVerify?

“zkVerify is a modular layer that focuses 
on verifying proofs at scale.”

1. Developer Flexibility 

○ Allows developers to choose the proving system 
that best suits their needs without worrying about 
underlying verification infrastructure. 

2. Enabler for Continued Innovation

○ Critical driver in evolving ZK landscape.

○ Foster broader adoption & innovation across 
ecosystem. 

3. Cost-efficiency

○ Reduces verification costs, making cryptographic 
proof integration more accessible and 
sustainable across diverse applications.

Why zkVerify?



Source: ZK Summit 12, October 8th 2024, Lisbon.

Greater ZK Narrative: How zkVerify Fits In



Technical
Core



Secure
Receipt

Broadcasting

L1 Framework 
For Verification

Aggregated
Receipt 

Data Structure 

Three Key Technical Components



Input: Proofs of Various Types from Various Sources

ZK Apps

ZK Games

ZK Defi

ZK Rollups

zkVM

ZK Web 2 

Proof

Proof

Proof

Proof

Proof

i

j

k

y

z

L1 Blockchain

● Sole purpose: Verify proofs at scale. No EVM.
● Foundation: Rust Substrate Framework.
● Core Design Principle: Modular Pallets. 

Why L1 Blockchain? 

● Censorship Resistance
● Publicly-Accessible Record
● Decentralized Incentive Model



L1 Blockchain: Rust & Substrate Framework

zkVerify Node

Node 1

Node 0 Node 2

Node 3

Node N

zkVerify
Node Client

Outer node services to 
handle network & 

infrastructure activity.

zkVerify
Runtime

Upgradable WebAssembly 
(Wasm) Runtime.



Verifier Pallets: Runtime Client via Node Acceleration

zkVerify Node Client

Networking

Consensus StorageRPC

TransactionTelemetry

zkVerify Runtime Client

Block Finalization: 
GRANDPA

Block Authoring: 
BABE

Account: 
Balances

Security: 
Staking

Proof Verification: 
Fflonk

Fund Mgmt: 
Treasury

Receipt Bridging: 
Hyperbridge

Governance: 
Referenda

Proof Verification: 
Groth16

Proof Verification: 
Proof of SQL

Proof Verification: 
Risc0 STARK

Proof Verification: 
zkSync Era

Proof Verification: 
UltraPlonk

Proof Verification: 
Node Acceleration

Arkworks 
Extensions

Substrate Primitive 
Elliptic Curve Utils

zkVerify Node

Proof Verification: 
New Proof Type

Verification Receipt: 
Aggregate



Secure
Receipt

Broadcasting

L1 Framework
For Verification 

Aggregated
Receipt 

Data Structure 

Three Key Technical Components



Output: Receipt of Aggregated Verifications

ZK Apps

ZK Games

ZK Defi

ZK Rollups

zkVM

ZK Web 2 

Verification 
Recipients

Ethereum
Sepolia

ApeChain
Curtis - Arbitrum Orbit L3

Horizen
EON Testnet

Proof

Proof

Proof

Proof

Proof

Receipt R

Receipt R

New Chain
Or Application

Receipt R

i

j

k

y

z

i

j

y

z

Receipt R



Receipt

Aggregated Receipt Data Structure

Merkle Root
Hash

Hash Hash

Hash Hash Hash Hash

Groth16
Proof

Risc0 
Proof

Proof of 
SQL

UltraPlonk 
Proof

Natural aggregation of heterogeneous proofs



Secure
Receipt

Broadcasting

L1 Framework
For Verification 

Aggregated
Receipt 

Data Structure 

Three Key Technical Components



Cross-chain Receipt Broadcasting

ZK Apps

ZK Games

ZK Defi

ZK Rollups

zkVM

ZK Web 2 

Verification 
Recipients

Ethereum
Sepolia

ApeChain
Curtis - Arbitrum Orbit L3

Horizen
EON Testnet

Proof

Proof

Proof

Proof

Proof

Aggregated Receipt

Aggregated Receipt

New Chain
Or Application

Aggregated Receipt

i

j

k

y

z

Aggregated Receipt



Destination
Chains

Ethereum
Sepolia

ApeChain
Curtis - Arbitrum Orbit L3

Horizen
EON Testnet

Aggregated Receipt

Aggregated Receipt

More Chains
Or applications

Aggregated Receipt

Cross-Chain Receipt Broadcasting

Source Chain

Hyperbridge
Protocol

Hyperbridge Protocol 

● ISMP (Interoperable State Machine Protocol) 
○ Streamlined framework for secure cross-chain 

messaging & state reads. 
○ Simple architecture w/Consensus Client, State 

Machine Client, Router, and Dispatcher.

● Interoperability Proofs
○ Includes consensus proofs and state machine 

proofs to validate the finalized states of 
counterpart chains, ensuring trustworthy, secure 
communication between blockchains.

● Decentralized Relayer Network
○ Utilizes permissionless, incentivized relayers to 

transmit messages and consensus proofs across 
chains without requiring whitelisting or staking, 
powered by cryptographic proofs.

Aggregated Receipt





Digging Deeper



Integrating a Web3 Dapp - Overall Flow

1. Submit proof to zkVerify via the Proof Submission Interface

1. Listen to ProofVerified event on zkVerify

1. Listen to NewProof event on zkVerify and get the AggregationID

1. Listen for NewAggregationReceipt event on zkVerify

1. Get the Merkle Path of your proof on zkVerify

1. Listen for the AttestationPosted event on the corresponding L1 chain containing your 
AggregationID

1. Invoke the verifyProofAttestation method of the zkVerify smart contract from your smart contract

Web2 App 
Integration 
Flow



Web2 App Integration 
Demo



Web3 zk Dapp 
Integration Demo



Looking
Ahead



Roadmap



Call To Action: Come Build With Us

Incentivized TestnetGrant Program

Hackathons

● ZK Hack Montreal
● ETHWarsaw 
● ETHSofia
● ZK Hack V



Call To Action: Online Hackaton in progress !

https://zkverify-zk-application-and-infrastructure-buildin.devfolio.co/ 

https://zkverify-zk-application-and-infrastructure-buildin.devfolio.co/


Horizen 2.0: Crypto-accelerated EVM Parachain on zkVerify

https://www.horizen.io/ 

Horizon 2.0 optimized EVM
zk Voting

zk Defi

zk Machine Learning

zk Bridging

zk Identity

zk Messaging

zk Gaming Zk Gambling

zk Verifiable Compute

Zero knowledge dApps

2.0 Optimized EVM (Parachain)

https://www.horizen.io/


Get In Touch

Currently Hiring

● Product Manager 

● Dev Relations Engineer 

● Senior Rust Blockchain Engineer

● Senior DevOps Engineer

● Web3 Content Creator

Get in Touch:

Horizen Labs
● x.com/HorizenLabs
● github.com/HorizenLabs
● research@horizenlabs.io
● horizenlabs.io 

zkVerify
● x.com/ZKVProtocol
● docs.zkverify.io
● discord.gg/zkverify 
● zkverify.io

http://x.com/HorizenLabs
http://github.com/HorizenLabs
mailto:research@horizenlabs.io
http://x.com/ZKVProtocol
https://docs.zkverify.io/
https://discord.gg/zkverify


Thank You



Questions ?


